¿Cuándo reemplazar un banco de baterías?

Consejos prácticos

DESCRIPCIÓN

Reemplazar un banco de baterías a tiempo previene fallas críticas, mejora la eficiencia energética y protege los equipos conectados. El monitoreo constante y las pruebas periódicas garantizan una operación confiable y prolongada del sistema.

INDICADORES TÉCNICOS DE REEMPLAZO

- Caída de la capacidad (<80% nominal)
- Voltaje en reposo bajo (< Voltaje nominal)
- Aumento en resistencia interna
- Autodescarga acelerada
- Temperatura anormal
- Fugas o hinchazón

VIDA UTIL ESPERADA POR TIPO DE BATERÍA

Plomo-ácido sellada (AGM/Gel)	3-5 años
Plomo-ácido industrial	8-12 años
Litio-ion (LiFePO4, NMC)	10-15 años
NiCd / NiMH industriales	8-10 años

↑ Cada +5°C sobre 25°C reduce 10% la vida útil.

PRUEBAS RECOMENDADAS

- Prueba de Capacidad ($<80\% \rightarrow$ reemplazar)
- Prueba de impedancia interna
- Prueba de flotación y voltaje individual
- Inspección térmica y visual

SEÑALES OPERATIVAS COMUNES O FRECUENTES

- Menor autonomía en sistemas solares o UPS
- Alarmas del BMS o inversor
- Desbalance entre módulos (>5%)
- Mayor tiempo dfe carga sin alcanzar voltaje nominal

CRITERIOS DE REEMPLAZO DE BATERÍAS

Criterio	Indicador a evaluar	Umbral típico de reemplazo	Referencia/Norma	Acción recomendada
Capacidad residual	Resultado de prueba de capacidad (Ah o %)	≤ 80% de la capacidad nominal	IEEE 450 (plomo- ácido), IEEE 1188 (VRLA)	Reemplazo de celdas/banco completo
Resistencia interna / Conductancia	Medición periódica con analizador	Aumento \geq 25–30% respecto a valor inicial	IEEE 1188 / IEEE 1106	Planear reemplazo, riesgo de falla prematura
Pruebas de autonomía/descarga	Duración de respaldo vs. diseño	No cumple autonomía requerida	Prácticas TIA-942 / Data Centers	Reemplazo inmediato para garantizar continuidad crítica
Número de celdas defectuosas	% de celdas con falla en un banco	> 20% de celdas fuera de parámetros	Buenas prácticas de O&M	Sustituir banco completo (evitar desbalance)
Condición física visible	Inspección visual: hinchazón, fugas, corrosión	Presencia de daño mecánico o fuga	OSHA / NFPA 70E	Retiro inmediato por seguridad
Edad cronológica	Tiempo de servicio vs. vida de diseño	80–100% de la vida útil esperada (ej. 10-15 años VRLA ventiladas; 5–10 años VRLA selladas)	Fabricante / IEEE 450	Plan de reemplazo preventivo

